<abstract>
<p>Endophytes colonizing plant tissue play an essential role in plant growth, development, stress tolerance and plant protection from soil-borne diseases. In this study, we report the diversity of cultivable endophytic bacteria associated with marigold (<italic>Calendula officinalis</italic> L.) by using 16S rRNA gene analysis and their plant beneficial properties. A total of 42 bacterial isolates were obtained from plant tissues of marigold. They belonged to the genera <italic>Pantoea, Enterobacter, Pseudomonas, Achromobacter, Xanthomonas, Rathayibacter, Agrobacterium, Pseudoxanthomonas</italic>, and <italic>Beijerinckia</italic>. Among the bacterial strains, <italic>P. kilonensis</italic> FRT12, and <italic>P. rhizosphaerae</italic> FST5 showed moderate or vigorous inhibition against three tested plant pathogenic fungi, <italic>F. culmorum, F. solani</italic> and <italic>R. solani</italic>. They also demonstrated the capability to produce hydrolytic enzymes and indole-3-acetic acid (IAA). Five out of 16 isolates significantly stimulated shoot and root growth of marigold in a pot experiment. The present study reveals that more than half of the bacterial isolates associated with marigold (<italic>C. officinalis</italic> L.) provided antifungal activity against one or more plant pathogenic fungi. Our findings suggest that medicinal plants with antimicrobial activity could be a source for selecting microbes with antagonistic activity against fungal plant pathogens or with plant growth stimulating potential. These isolates might be considered as promising candidates for the improvement of plant health.</p>
</abstract>