2017
DOI: 10.1088/1757-899x/236/1/012107
|View full text |Cite
|
Sign up to set email alerts
|

Historical maintenance relevant information road-map for a self-learning maintenance prediction procedural approach

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1

Citation Types

0
1
0
1

Year Published

2020
2020
2023
2023

Publication Types

Select...
3
1

Relationship

0
4

Authors

Journals

citations
Cited by 4 publications
(2 citation statements)
references
References 0 publications
0
1
0
1
Order By: Relevance
“…The learning process of a computer when it is not explicitly programmed is referred to as machine learning [41]. In recent years, the use of machine learning has attracted the attention of researchers in the prediction of maintenance activities [42]. A machine learning technique investigates deep inter/intra-correlations and patterns in a dataset with minimal human intervention.…”
Section: Machine Learning Modelsmentioning
confidence: 99%
“…The learning process of a computer when it is not explicitly programmed is referred to as machine learning [41]. In recent years, the use of machine learning has attracted the attention of researchers in the prediction of maintenance activities [42]. A machine learning technique investigates deep inter/intra-correlations and patterns in a dataset with minimal human intervention.…”
Section: Machine Learning Modelsmentioning
confidence: 99%
“…cuantificación del estado de los activos, gestión de alertas) y un sistema de apoyo a la toma de decisiones que recibe los resultados de estas herramientas y optimiza las intervenciones de mantenimiento. Esta comunicación presenta avances en el marco metodológico y analítico, y se avala con resultados obtenidos en un caso piloto (Infralert, 2016(Infralert, , 2017Morales et al, 2017Morales et al, , 2018Morales et al, , 2020. Las alertas estimadas se evalúan, de acuerdo con la información que brinda el sistema de toma de decisiones, en base a la evolución del estado de los activos de interés, reflejado por sus variables explicativas (e.g.…”
Section: Introductionunclassified