IntroductionThe advent of monoclonal antibodies was a major breakthrough for the development of antibody-based therapies against various diseases, including virus infection. 1 However, expression in the cytoplasm or nucleus of eukaryotic cells of full-length immunoglobulin G or single-chain antibody variable domain fragments aiming at blocking an intracellular target is poorly efficient because of the reducing nature of these compartments. The engineering of single-chain antibody variable domain fragments (scFvs) that consist in a tandem fusion of the VH and VL domains of a specific antibody partially overcame this limitation. Numerous scFvs have shown their potency for inhibition of the function of their target proteins in cells. In particular, a HIV-1 Tat-specific scFv was shown to neutralize the trans-activating function of this viral protein and to prevent full expression of the viral genome in infected cells. 2 ScFvs specific for HIV-1 matrix, integrase, or regulatory proteins such as Tat, Rev, and Vif are also able to interfere with HIV-1 replication. [3][4][5][6][7][8][9] However, disulfide bonds between VH and VL chains of scFvs are unlikely to form when scFvs are targeted to reducing compartments such as the cytoplasm or the nucleus, resulting in scFvs with lower or no affinity for their antigen. 10 Recently, a major improvement was brought by the use of single-domain antibodies (sdAbs) derived from camelids. In addition to conventional antibodies, camelids express antibodies composed of heavy chains only, with a single variable domain (VHH) capable of recognizing their cognate antigens. 11 These variable domains, called sdAbs, are endowed with many attractive features. 12 The absence of requirement for disulfide bond formation in sdAbs is particularly interesting when targeting of proteins found in reducing cell compartments is considered. 13 In contrast to conventional antibodies, these 13-kDa sdAb fragments can penetrate in cavities located on the surface of antigens (for review, see Nguyen et al 14 ). These cryptic sites are often more conserved than exposed epitopes on viral proteins and are a target of choice for blocking antibodies. Interestingly, sdAb fragments targeting the HIV-1 Rev or Vif proteins have been already characterized and have displayed antiviral activity in cell-culture assays. 15,16 In the present study, we characterized an sdAb from a llama immunized with a recombinant form of Nef, an HIV-1 nonstructural protein found both in the cytoplasm of infected cells and in association with cellular membranes. Considering Nef as a potential target for antiviral therapy arose from the findings that this HIV-1 protein is important for AIDS pathogenesis in vivo (for review, see Foster and Garcia 17 ). Nef is abundantly expressed early after virus infection and perturbs the trafficking of several membrane proteins through action on the endocytic pathway. This leads to the modulation of cell surface expression of some receptors, including CD4 and major histocompatibility complex class I (MHC-I...