El acceso a la versión del editor puede requerir la suscripción del recurso Access to the published version may require subscription Abstract-Due to the high deployment of devices such as smartphones and tablets and their increasing popularity in our society, the use of biometric traits in commercial and banking applications through these novel devices as an easy, quick and reliable way to perform payments is rapidly increasing. The handwritten signature is one of the most socially accepted biometric traits in these sectors due to the fact that it has been used in financial and legal transitions for centuries. In this paper we focus on dynamic signature verification systems. Nowadays, most of the state-of-the-art systems are based on extracting information contained in the X and Y spatial position coordinates of the signing process, which is stored in the biometric templates. However, it is critical to protect this sensible information of the users signatures against possible external attacks that would allow criminals to perform direct attacks to a biometric system or carry out high quality forgeries of the users signatures. Following this problem, the goal of this work is to study the performance of the system in two cases: first, an optimal time functions-based system taking into account the information related to X and Y coordinates and pressure, which is the common practice (i.e. Standard System). Second, we study an extreme case not considering information related to X, Y coordinates and their derivatives on the biometric system (i.e. Secure System), which would be a much more robust system against attacks, as this critical information would not be stored anywhere. The experimental work is carried out using e-BioSign database which makes use of 5 devices in total. The systems considered in this work are based on Dynamic Time Warping (DTW), an elastic measure over the selected time functions. Sequential Forward Features Selection (SFFS) is applied as a reliable way to obtain an optimal time functions vector over a development subset of users of the database. The results obtained over the evaluation subset of users of the database show a similar performance for both Standard and Secure Systems. Therefore, the use of a Secure System can be useful in some applications such as banking in order to avoid the lost of important user information against possible external attacks.