The hole distribution in Sr14Cu24O41 is studied by low temperature polarization dependent O K Near-Edge X-ray Absorption Fine Structure measurements and state of the art electronic structure calculations that include core-hole and correlation effects in a mean-field approach. Contrary to all previous analysis, based on semi-empirical models, we show that correlations and antiferromagnetic ordering favor the strong chain hole-attraction. For the remaining small number of holes accommodated on ladders, leg-sites are preferred to rung-sites. The small hole affinity of rung-sites explains naturally the 1D -2D cross-over in the phase diagram of (La,Y,Sr,Ca)14Cu24O41.