X-ray absorption (XAS) and emission (XES) spectroscopy near B K and C K edges have been performed on metallic (ϳ0.1 at. % B, B-diamond) and semiconducting (ϳ0.03 at. % B and N, BN-diamond) doped diamond films. Both B K XAS and XES spectra show a metallic partial density of states (PDOS) with the Fermi energy of 185.3 eV, and there is no apparent boron-concentration dependence in contrast to the different electric property. In C K XAS spectrum of B-diamond, the impurity state ascribed to boron is clearly observed near the Fermi level. The Fermi energy is found to be almost same with the top of the valence band of nondoped diamond: E V = 283.9 eV. C K XAS of BN-diamond shows both the B-induced shallow level and N-induced deep and broad levels as the in-gap states, in which the shallow level is in good agreement with the activation energy ͑E a = 0.37 eV͒ estimated from the temperature dependence of the conductivity; namely, the change in C 2p PDOS of impurity-induced metallization is directly observed. The electric property of this diamond is ascribed mainly to the electronic structure of C 2p near the Fermi level. The observed XES spectra are compared with the discrete variational X␣ (DVX␣) cluster calculation. The DVX␣ result supports the strong hybridization between B 2p and C 2p observed in XAS and XES spectra, and suggests that the small amount of boron ͑ഛ0.1 at. % ͒ in diamond occupies the substitutional site rather than interstitial site.
X-ray emission (XES) and absorption (XAS) spectra near the B-K edge were measured on single-crystalline AlB2 compound which is an isostructural diboride of superconducting MgB2. The partial density of states (PDOS) of B-2pσ and pπ orbitals were derived from the polarization dependence of XES and XAS spectra. There are considerable amounts of PDOS near the Fermi energy in AlB2 similarly to that in MgB2, but there are almost no PDOS in pσ orbitals of AlB2 near the Fermi energy, i.e., a pseudo-gap in pσ state and a broad metallic state in pπ state are observed. The present result indirectly supports scenarios that the pσ holes play an important role in the occurrence of superconductivity in MgB2. The overall features of PDOS were found to be in good agreement with the result of band calculation of AlB2, but a small discrepancy in the Fermi energy is observed, which is attributed to the Al vacancy in the compounds, i.e., the estimated concentration is Al0.93B2. KEYWORDS: MgB 2 , AlB 2 , single crystal, partial density of state, pσ and pπ orbitals, X-ray emission and absorption spectroscopy
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.