To discern how mechanical forces coordinate biological outcomes, methods that map cell-generated forces in a spatiotemporal manner, and at cellular length scales, are critical. In their native environment, whether it be within compact multicellular three-dimensional structures or sparsely populated fibrillar networks of the extracellular matrix, cells are constantly exposed to a slew of physical forces acting on them from all directions. At the same time, cells exert highly localized forces of their own on their surroundings and on neighboring cells. Together, the generation and transmission of these forces can control diverse cellular activities and behavior as well as influence cell fate decisions. To thoroughly understand these processes, we must first be able to characterize and measure such forces. However, our experimental needs and technical capabilities are in discordwhile it is apparent that we should study cell-generated forces within more biologically relevant 3D environments, this goal remains challenging because of caveats associated with complex "sensing−transduction−readout" modalities. In this Review, we will discuss the latest techniques for measuring cell-generated forces. We will highlight recent advances in traction force microscopy and examine new alternative approaches for quantifying cell-generated forces, both of individual cells and within 3D tissues. Finally, we will explore the future direction of novel cellular force-sensing tools in the context of mechanobiology and next-generation biomaterials design.