The Medium Access Control protocol of Power Line Communication networks (defined in Homeplug and IEEE 1901 standards) has received relatively modest attention from the research community. As a consequence, there is only one analytic model that complies with the standardised MAC procedures and considers unsaturated conditions. We identify two important limitations of the existing analytic model: high computational expense and predicted results just prior to the predicted saturation point do not correspond to long-term network performance. In this work, we present a simplification of the previously defined analytic model of Homeplug MAC able to substantially reduce its complexity and demonstrate that the previous performance results just before predicted saturation correspond to a transitory phase. We determine that the causes of previous misprediction are common analytical assumptions and the potential occurrence of a transitory phase, that we show to be of extremely long duration under certain circumstances. We also provide techniques, both analytical and experimental, to correctly predict long-term behaviour and analyse the effect of specific Homeplug/IEEE 1901 features on the magnitude of misprediction errors.