2012
DOI: 10.1590/s1415-43662012001200011
|View full text |Cite
|
Sign up to set email alerts
|

Homogeneidade de séries climatológicas em Minas Gerais

Abstract: R ESU M OOs dados climáticos são de extrema importância nas diversas atividades humanas, por fornecerem muitas informações relativas ao meio ambiente e aos impactos nele decorrentes. Portanto, há necessidade de informações meteorológicas estatisticamente homogêneas visto que uma série temporal não homogênea pode comprometer a análise e a interpretação desses dados. Assim, este trabalho teve como objetivo estudar metodologias para avaliar a homogeneidade de séries de dados de temperaturas máximas e mínimas no E… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

2
6
0
2

Year Published

2016
2016
2022
2022

Publication Types

Select...
8

Relationship

0
8

Authors

Journals

citations
Cited by 9 publications
(10 citation statements)
references
References 27 publications
(31 reference statements)
2
6
0
2
Order By: Relevance
“…The trends observed in the INMET stations were random for the three analyzed variables, unlike what may be verified with the ANA rainfall stations that concentrated the trends in the rainy season, that is, in the case of the maximum and minimum temperature, no relation was verified between significant changes in a particular season. The same behavior was identified in a study conducted by [9] in Minas Gerais state, where even in neighboring and highly correlated stations, there was generally no satisfactory agreement between the significant points of change.…”
Section: Resultssupporting
confidence: 74%
See 1 more Smart Citation
“…The trends observed in the INMET stations were random for the three analyzed variables, unlike what may be verified with the ANA rainfall stations that concentrated the trends in the rainy season, that is, in the case of the maximum and minimum temperature, no relation was verified between significant changes in a particular season. The same behavior was identified in a study conducted by [9] in Minas Gerais state, where even in neighboring and highly correlated stations, there was generally no satisfactory agreement between the significant points of change.…”
Section: Resultssupporting
confidence: 74%
“…Authors such as [9,10,8] used the trend analysis to verify climatic variability in historical series, which is an advantage of this analysis, since it allows to observe changes in the series behavior and to determine which regions are suffering significant variations over time. Thus, it may be considered that the Mann-Kendall trend analysis test is employed to identify climate change occurrence.…”
Section: Resultsmentioning
confidence: 99%
“…To ensure the reliability of climate studies, the data must be reliable and homogeneous. Analysis with non-homogeneous data may imply erroneous conclusions (Santos, Sediyama, Oliveira, & Abrahão, 2012). Domonkos (2006) evaluates that there are still some doubts about the efficiency of the tests, and it is not possible to select a method with perfect capability of detecting non-homogeneity.…”
Section: Methodsmentioning
confidence: 99%
“…Os métodos de estimativa RLS, RLM e RLMS não têm restrições quanto ao número de falhas por mês, porém sua precisão depende da densidade e da distância entre as estações (De Gaetano et al, 1995;Neumann et al, 2003). Além disso, existem problemas que podem estar associados com os erros de métodos que utilizam dados de estações próximas: baixa densidade espacial das estações meteorológicas (Blackie e Simpson, 1993), a presença de não homogeneidade ou descontinuidade de séries temporais climatológicas que pode afetar a caracterização da variabilidade climática de uma região (Dos Santos et al, 2012) e a variabilidade dos dados de observação ser fortemente influenciada pelo efeito da topografia complexa ou perturbações de pequena escala que causam erros micrometeorológicos e são difíceis de identificar (Gandin, 1988;Stahl et al, 2006;Xia et al, 1999). A geografia do estado de Santa Catarina possui grande variação altimétrica de 0 a 1827 metros (CEPED, 2013), sendo a altitude um dos fatores que explica a grande variabilidade espacial das temperaturas máxima e mínima do ar no estado (Massignam e Pandolfo, 2006).…”
Section: Métodounclassified