I propose a general form for the boundary coupling of B-type topological Landau-Ginzburg models. In particular, I show that the relevant background in the open string sector is a (generally non-Abelian) superconnection of type (0, 1) living in a complex superbundle defined on the target space, which I allow to be a non-compact Calabi-Yau manifold. This extends and clarifies previous proposals. Generalizing an argument due to Witten, I show that BRST invariance of the partition function on the worldsheet amounts to the condition that the (0, ≤ 2) part of the superconnection's curvature equals a constant endomorphism plus the Landau-Ginzburg potential times the identity section of the underlying superbundle. This provides the target space equations of motion for the open topological model.