Pediatric epilepsy caused by KCNQ2 mutations can manifest benign familial neonatal convulsions (BFNC) to neonatal-onset epileptic encephalopathy (EE). Patients might manifest mild to profound neurodevelopmental disabilities. We analysed c.853C > A (P285T) and three mutations that cause KCNQ2 protein changes in the 247 position: c.740C > T (S247L), c.740C > A (S247X), and c.740C > G (S247W). S247L, S247W, and P285T cause neonatal-onset EE and poor neurodevelopmental outcomes; S247X cause BFNC and normal outcome. We investigated the phenotypes correlated with human embryonic kidney 293 (HEK293) cell functional current changes. More cell-current changes and a worse conductance curve were present in the homomeric transfected S247X than in S247L, S247W, and P285T. But in the heteromeric channel, S247L, S247W and P285T had more current impairments than did S247X. The protein expressions of S247X were nonfunctional. The outcomes were most severe in S247L and S247W, and severity was correlated with heteromeric current. Current changes were more significant in cells with homomeric S247X, but currents were "rescued" after heteromeric transfection of KCNQ2 and KCNQ3. This was not the case in cells with S247L, S247W. Our findings support that homomeric current changes are common in KCNQ2 neonatal-onset EE and KCNQ2 BFNC; however, heteromeric functional current changes are correlated with long-term neurodevelopmental outcomes. KCNQ2 (OMIM 602235)-associated seizures usually occur during the first week after birth and can contribute to benign familial neonatal convulsions (BFNC), benign familial neonatal-infantile seizures (BFNIS), benign familial infantile seizures (BFIS) 1-5 , and neonatal-onset epileptic encephalopathy (EE) 6-8. Mutations in KCNQ2, a voltage-gated potassium channel gene at 20q13, are usually inherited in an autosomal-dominant manner in benign epileptic syndromes 1,2. Patients with BFNC usually have seizures with a predicted benign course and predicted good neurodevelopmental outcomes 1-3,9,10. On follow-up, about 30% of patients with inherited KCNQ2 mutations might have recurrent seizures beyond neonatal age 10. Most neonatal-onset EE, mutations are de novo, and patients present with severe seizures and grave neurological consequences. Seizures often remit as the patients become older, but the patients usually have intellectual developmental delays or autism 11,12. At present, however, outcomes cannot be accurately predicted. Functional KCNQ channels are homo-or heteromers of four subunits each containing 6 transmembrane domains (S1-S6), which include a voltage sensor in S1-S4 and S5-S6, and a loop between S5-S6 that builds the ion channel pore, a cytoplasmic N-terminal, and a long C-terminal region with complex functions exhibiting interactions between syntaxin, phosphatidylinositol 4,5-bisphosphate, ankyrin-G, Syn-1A, and A-kinase