We study the magnetotransport of a GaAs/AlGaAs quantum well with self-assembled InAs quantum dots. Negative magnetoresistance is observed at low field and analysed by weak localization theory. The temperature dependence of the extracted dephasing rate is linear, which shows that the inelastic electron-electron scattering processes with small energy transfer are the dominant contribution in breaking the electron phase coherence. The results are compared with those of a reference sample that contains no quantum dots.