2020
DOI: 10.1134/s2070046620020053
|View full text |Cite
|
Sign up to set email alerts
|

Hörmander Classes of Pseudo-Differential Operators over the Compact Group of p-Adic Integers

Abstract: Let > 3 be a prime number. In this note, we calculate explicitly the unitary dual and the matrix coefficients of the Engel group over the -adic integers  4 (ℤ ). We use this information to calculate explicitly the spectrum of the Vladimirov sub-Laplacian, and show how it defines a globally hypoelliptic operator on  4 .

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3

Citation Types

0
15
0

Year Published

2020
2020
2020
2020

Publication Types

Select...
2
1

Relationship

1
2

Authors

Journals

citations
Cited by 3 publications
(15 citation statements)
references
References 33 publications
0
15
0
Order By: Relevance
“…With that purpose we state the characterization of compact operators in Hörmander classes. The proof of this statement is given in [37]…”
Section: Sincementioning
confidence: 96%
See 4 more Smart Citations
“…With that purpose we state the characterization of compact operators in Hörmander classes. The proof of this statement is given in [37]…”
Section: Sincementioning
confidence: 96%
“…For example the simplicity of the composition formula in this setting allows one to provide necessary and sufficient conditions for belonging to Schatten-Von Neumann classes. Also in [37] the following version of the Weyl law is proved. We will use the special case when = 1.…”
Section: Sincementioning
confidence: 97%
See 3 more Smart Citations