A promising ion-beam-assisted deposition (IBAD) method was developed to improve the salt-water corrosion resistance of NiCoCrAlY-AlSiY coating. During hot salt-water exposure, hydrochloric acid (HCl) was produced when chloride salt, water, and metal oxide reacted with each other, while HCl was also produced when chlorine reacted with water. The as-deposited AlSiY layer exhibited a loose texture accompanied by numerous pore defects, which triggered the multi-scale diffusion of HCl, resulting in the large-area corrosion degradation of the coating texture and the rapid diffusion of the NiCoCrAlY bonding layer. By contrast, the ion-beam-assisted AlSiY layer showed a dense texture that effectively inhibited the inner diffusion of HCl and suppressed the corrosion reactions as well as the diffusion of the NiCoCrAlY bonding layer. The current results confirmed the significant potential of IBAD in inhibiting corrosion damage and diffusion of thermal protective coatings.