Room temperature tensile tests have been conducted at different strain rates ranging from 2 9 10 À6 to 1 9 10 À2 /s on hydrogen-free and hydrogen-charged 304 stainless steel (SS). Using a ferritescope and neutron diffraction, the amount of strain-induced martensite (SIM) has been in situ measured at the center region of the gage section of the tensile specimens or ex situ measured on the fractured tensile specimens. The ductility, tensile stress, hardness, and the amount of SIM increase with decreasing strain rate in hydrogen-free 304 SS and decrease in hydrogen-charged one. Specifically, SIM that forms during tensile tests is beneficial in increasing the ductility, strain hardening, and tensile stress of 304 SS, irrespective of the presence of hydrogen. A correlation of the tensile properties of hydrogen-free and hydrogen-charged 304 SS and the amount of SIM shows that hydrogen suppresses the formation of SIM in hydrogen-charged 304 SS, leading to a ductility loss and localized brittle fracture. Consequently, we demonstrate that hydrogen embrittlement of 304 SS is related to hydrogen-suppressed formation of SIM, corresponding to the disordered phase, according to our proposition. Compelling evidence is provided by the observations of the increased lattice expansion of martensite with decreasing strain rate in hydrogen-free 304 SS and its lattice contraction in hydrogen-charged one.