Summary
Biocrusts are key drivers of ecosystem functioning in drylands, yet our understanding of how climate change will affect the chemistry of biocrust‐forming species and their impacts on carbon (C) and nitrogen (N) cycling is still very limited.
Using a manipulative experiment conducted with common biocrust‐forming lichens with distinct morphology and chemistry (Buellia zoharyi, Diploschistes diacapsis, Psora decipiens and Squamarina lentigera), we evaluated changes in lichen total and isotopic C and N and several soil C and N variables after 50 months of simulated warming and rainfall reduction.
Climate change treatments reduced δ13C and the C : N ratio in B. zoharyi, and increased δ15N in S. lentigera. Lichens had species‐specific effects on soil dissolved organic N (DON), NH4+, β‐glucosidase and acid phosphatase activity regardless of climate change treatments, while these treatments changed how lichens affected several soil properties regardless of biocrust species. Changes in thallus δ13C, N and C : N drove species‐specific effects on dissolved organic nitrogen (DON), NH4+, β‐glucosidase and acid phosphatase activity.
Our findings indicate that warmer and drier conditions will alter the chemistry of biocrust‐forming lichens, affecting soil nutrient cycling, and emphasize their key role as modulators of climate change impacts in dryland soils.