Background
The use of social media for disseminating health care information has become increasingly prevalent, making the expanding role of artificial intelligence (AI) and machine learning in this process both significant and inevitable. This development raises numerous ethical concerns. This study explored the ethical use of AI and machine learning in the context of health care information on social media platforms (SMPs). It critically examined these technologies from the perspectives of fairness, accountability, transparency, and ethics (FATE), emphasizing computational and methodological approaches that ensure their responsible application.
Objective
This study aims to identify, compare, and synthesize existing solutions that address the components of FATE in AI applications in health care on SMPs. Through an in-depth exploration of computational methods, approaches, and evaluation metrics used in various initiatives, we sought to elucidate the current state of the art and identify existing gaps. Furthermore, we assessed the strength of the evidence supporting each identified solution and discussed the implications of our findings for future research and practice. In doing so, we made a unique contribution to the field by highlighting areas that require further exploration and innovation.
Methods
Our research methodology involved a comprehensive literature search across PubMed, Web of Science, and Google Scholar. We used strategic searches through specific filters to identify relevant research papers published since 2012 focusing on the intersection and union of different literature sets. The inclusion criteria were centered on studies that primarily addressed FATE in health care discussions on SMPs; those presenting empirical results; and those covering definitions, computational methods, approaches, and evaluation metrics.
Results
Our findings present a nuanced breakdown of the FATE principles, aligning them where applicable with the American Medical Informatics Association ethical guidelines. By dividing these principles into dedicated sections, we detailed specific computational methods and conceptual approaches tailored to enforcing FATE in AI-driven health care on SMPs. This segmentation facilitated a deeper understanding of the intricate relationship among the FATE principles and highlighted the practical challenges encountered in their application. It underscored the pioneering contributions of our study to the discourse on ethical AI in health care on SMPs, emphasizing the complex interplay and the limitations faced in implementing these principles effectively.
Conclusions
Despite the existence of diverse approaches and metrics to address FATE issues in AI for health care on SMPs, challenges persist. The application of these approaches often intersects with additional ethical considerations, occasionally leading to conflicts. Our review highlights the lack of a unified, comprehensive solution for fully and effectively integrating FATE principles in this domain. This gap necessitates careful consideration of the ethical trade-offs involved in deploying existing methods and underscores the need for ongoing research.