As a kind of typical green material, natural materials tend to exhibit excellent performance in the engineering field because of their structure and special functions. The homogeneous vessels of red willow (RW) are potentially unique structures to store lubricants or reinforcing agents to present special functions for engineering applications. A series of novel red willow wood-based composites, which were infused with nano-MoS 2 and then reinforced by the epoxy, were developed. Their self-lubricating, mechanical vibration and noise reduction performances were investigated, and the friction, vibration, and noise reduction mechanisms were disclosed. The infusion MoS 2 treatment was very beneficial for improving the tribological properties of MoS 2 -curing epoxy/red willow (MCW), and the coefficient of friction (COF) was reduced by 65.8% under water-lubricated friction after infusing 24 times. Meanwhile, the mechanical performances of MCW were obviously enhanced through the curing treatment of the epoxy. The synergistic effects of the infusion and curing treatments significantly decreased the wear phenomena on the friction surfaces of MCW and weakened the COF and its fluctuation amplitudes, which resulted in the presented excellent vibration and noise reduction performance. The knowledge gained herein could not only develop a novel wood-based composite with low COF and good vibration reduction properties in the engineering field but also provide a new methodology for the design of artificial porous materials with stable and smooth friction processes.