Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
The field of voice analysis has experienced significant transformations, evolving from basic perceptual assessments to the incorporation of advanced digital signal processing and computational tools. This progression has facilitated a deeper understanding of the complex dynamics of vocal function, particularly through the use of acoustic voice analysis within a multidimensional evaluation framework. Traditionally, voice analysis relied on parameters such as fundamental frequency, jitter, shimmer, and noise-to-harmonic ratio, which, despite their utility, have faced criticism for variability and lack of robustness. Recent developments have led to a shift toward more reliable metrics such as cepstral measures, which offer improved accuracy in voice quality assessments. Furthermore, the integration of multiparametric constructs underscores a comprehensive approach to evaluating vocal quality, blending sustained vowels, and continuous speech analyses. Current trends in clinical practice increasingly favor these advanced measures over traditional parameters due to their greater reliability and clinical utility. Additionally, the emergence of artificial intelligence (AI), particularly deep learning, holds promise for revolutionizing voice analysis by enhancing diagnostic precision and enabling efficient, non-invasive screening methods. This shift toward AI-driven approaches signifies a potential paradigm change in voice health, suggesting a future where AI not only aids in diagnosis but also the early detection and treatment of voice-related pathologies.
The field of voice analysis has experienced significant transformations, evolving from basic perceptual assessments to the incorporation of advanced digital signal processing and computational tools. This progression has facilitated a deeper understanding of the complex dynamics of vocal function, particularly through the use of acoustic voice analysis within a multidimensional evaluation framework. Traditionally, voice analysis relied on parameters such as fundamental frequency, jitter, shimmer, and noise-to-harmonic ratio, which, despite their utility, have faced criticism for variability and lack of robustness. Recent developments have led to a shift toward more reliable metrics such as cepstral measures, which offer improved accuracy in voice quality assessments. Furthermore, the integration of multiparametric constructs underscores a comprehensive approach to evaluating vocal quality, blending sustained vowels, and continuous speech analyses. Current trends in clinical practice increasingly favor these advanced measures over traditional parameters due to their greater reliability and clinical utility. Additionally, the emergence of artificial intelligence (AI), particularly deep learning, holds promise for revolutionizing voice analysis by enhancing diagnostic precision and enabling efficient, non-invasive screening methods. This shift toward AI-driven approaches signifies a potential paradigm change in voice health, suggesting a future where AI not only aids in diagnosis but also the early detection and treatment of voice-related pathologies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.