For land-use planning, numerically fast and easily applicable tools are urgently needed that allow us to assess how landscape structure and dynamics affect biodiversity. To date, such tools exist only for static landscapes. We provide an analytical formula for the mean lifetime of species in fragmented and dynamic habitat networks where habitat patches may be destroyed and created elsewhere. The formula is able to consider both patch size heterogeneity and dynamics additionally to patch number and connectivity. It is validated through comparison with a dynamic and spatially explicit simulation model. It can be used for the optimization of spatio-temporal land-use patterns in real landscapes and for advancing our general understanding of key processes affecting the survival of species in fragmented heterogeneous dynamic landscapes.