Abundant natural resources are the basis of urbanisation and industrialisation. Citizens are the key factor in promoting a sustainable supply of natural resources and the high-quality development of urban areas. This study focuses on the co-production behaviours of citizens regarding urban natural resource assets in the age of big data, and uses the latent Dirichlet allocation algorithm and the stepwise regression analysis method to evaluate citizens’ experiences and feelings related to the urban capitalisation of natural resources. Results show that, firstly, the machine learning algorithm based on natural language processing can effectively identify and deal with the demands of urban natural resource assets. Secondly, in the experience of urban natural resources, citizens pay more attention to the combination of history, culture, infrastructure and natural landscape. Unique natural resource can enhance citizens’ sense of participation. Finally, the scenery, entertainment and quality and value of urban natural resources are the influencing factors of citizens’ satisfaction.