In a secret-sharing scheme, the secret is shared among a set of shareholders, and it can be reconstructed if a quorum of these shareholders work together by releasing their secret shares. However, in many applications, it is undesirable for nonshareholders to learn the secret. In these cases, pairwise secure channels are needed among shareholders to exchange the shares. In other words, a shared key needs to be established between every pair of shareholders. But employing an additional key establishment protocol may make the secret-sharing schemes significantly more complicated. To solve this problem, we introduce a new type of secret-sharing, called protected secret-sharing (PSS), in which the shares possessed by shareholders not only can be used to reconstruct the original secret but also can be used to establish the shared keys between every pair of shareholders. Therefore, in the secret reconstruction phase, the recovered secret is only available to shareholders but not to nonshareholders. In this paper, an information theoretically secure PSS scheme is proposed, its security properties are analyzed, and its computational complexity is evaluated. Moreover, our proposed PSS scheme also can be applied to threshold cryptosystems to prevent nonshareholders from learning the output of the protocols.