The
ability to accurately compute low-energy excited states of
chlorophylls is critically important for understanding the vital roles
they play in light harvesting, energy transfer, and photosynthetic
charge separation. The challenge for quantum chemical methods arises
both from the intrinsic complexity of the electronic structure problem
and, in the case of biological models, from the need to account for
protein–pigment interactions. In this work, we report electronic
structure calculations of unprecedented accuracy for the low-energy
excited states in the Q and B bands of chlorophyll
a
. This is achieved by using the newly developed domain-based local
pair natural orbital (DLPNO) implementation of the similarity transformed
equation of motion coupled cluster theory with single and double excitations
(STEOM-CCSD) in combination with sufficiently large and flexible basis
sets. The results of our DLPNO–STEOM-CCSD calculations are
compared with more approximate approaches. The results demonstrate
that, in contrast to time-dependent density functional theory, the
DLPNO–STEOM-CCSD method provides a balanced performance for
both absorption bands. In addition to vertical excitation energies,
we have calculated the vibronic spectrum for the Q and B bands through
a combination of DLPNO–STEOM-CCSD and ground-state density
functional theory frequency calculations. These results serve as a
basis for comparison with gas-phase experiments.