2019 IEEE 16th India Council International Conference (INDICON) 2019
DOI: 10.1109/indicon47234.2019.9029107
|View full text |Cite
|
Sign up to set email alerts
|

Human Activity Classification Based On Breathing Patterns Using IR-UWB Radar

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1

Citation Types

0
1
0
1

Year Published

2020
2020
2024
2024

Publication Types

Select...
5
1

Relationship

0
6

Authors

Journals

citations
Cited by 9 publications
(2 citation statements)
references
References 9 publications
0
1
0
1
Order By: Relevance
“…The ML‐based breath identification scheme captured four sorts of breath patterns of 20 different humans through Novelda radar chip X4M200 in [39] and preprocessed by short‐time Fourier transform (SIFT), occupied SVM with five‐fold cross‐validation of STFT, they achieved around 99% exactness of classifying vital signs.…”
Section: Related Workmentioning
confidence: 99%
“…The ML‐based breath identification scheme captured four sorts of breath patterns of 20 different humans through Novelda radar chip X4M200 in [39] and preprocessed by short‐time Fourier transform (SIFT), occupied SVM with five‐fold cross‐validation of STFT, they achieved around 99% exactness of classifying vital signs.…”
Section: Related Workmentioning
confidence: 99%
“…Dicho sensor contiene un algoritmo para la detección de la respiración de las personas por medio de radar [22]. Existe en la literatura evidencia suficiente que demuestra la fiabilidad de este sensor para medir la frecuencia respiratoria cercana a grado médico [1,10,12,13].…”
Section: Medición De La Frecuencia De Respiraciónunclassified