In addition to roles in motor coordination, the cerebellum is also associated with cognitive function. The aim of the present study was to investigate the effect of treadmill exercise on spatial navigation deficit induced by chronic cerebral hypoperfusion (CCH). Furthermore, whether decreased loss of Purkinje cells, which contain the calcium-binding protein in the posterior lobe of the cerebellum, attenuates the spatial navigation deficit induced by CCH was also investigated. Wistar rats were randomly divided into three groups: Sham group, bilateral common carotid arteries occlusion (BCCAO) group and a BCCAO + exercise (Ex) group. The rats in the BCCAO + Ex group ran on a treadmill for 30 min once a day for 8 weeks, starting at 4 weeks post-birth. CCH was induced by performing BCCAO at 12 weeks post-birth. The Morris water maze test was performed to determine the spatial navigation function of the rats. To investigate the histological features of the cerebellum in all of the experimental groups post-treatment, terminal deoxynucleotidyl transferase dUTP nick end labeling staining, as well as immunohistochemical analysis revealing the expression of calbindin, parvalbumin, glial fibrillary acidic protein, ionized calcium-binding adaptor molecule 1 and caspase-3, was performed. The results of the present study revealed that treadmill exercise improved spatial navigation, decreased the expression of reactive astrocytes and microglial cells, and decreased apoptotic rates in the cerebellar vermis post-CCH. Treadmill exercise also attenuated the loss of Purkinje cells following CCH. The number of Purkinje cells was revealed to be negatively correlated with spatial navigation performance. These results indicate that treadmill exercise may attenuate spatial navigation impairment via inhibition of Purkinje cell loss in the posterior lobe of the cerebellum following CCH. Therefore, treadmill exercise may represent a therapeutic strategy for the treatment of patients with spatial navigation impairment following CCH.
Vascular dementia (VaD), the second most prevalent type of dementia, is caused by reduced blood supply to the brain that results in cognitive impairment. Despite the efforts of numerous studies, the pathological mechanisms behind VaD remain unclear. The aim of the present study was to identify candidate genes that undergo changes in hippocampal DNA methylation owing to VaD. A genome-wide DNA methylation analysis was performed, using methylated DNA-binding domain sequencing. VaD model rats with cognitive impairment induced by bilateral common carotid artery occlusion were confirmed using the radial arm maze test. A total of 1,180 differentially methylated genes (DMGs) were identified, and functional annotation analysis revealed the DMGs to be enriched in 10 Gene Ontology biological processes. Network analysis using the STRING database indicated that seven genes were closely connected. Rats in the VaD model group demonstrated relative hypomethylation in the promoter region and increased mRNA expression of the hippocampal genes vascular endothelial growth factor (VEGFA) and kinase insert domain receptor, but only differences in VEGFA mRNA expression levels were determined to be statistically significant. In conclusion, these preliminary data from the functional annotation of hippocampal DMGs in the promoter region highlighted candidate genes for VaD that may contribute to the elucidation of its pathophysiology.
The investigation of C4F8+O2 feed gas composition on both plasma parameters and plasma treated silicon surface characteristics was carried out. The combination of plasma diagnostics by Langmuir probes and plasma modeling indicated that an increase in O2 mixing ratio results in monotonically decreasing densities of CF(x) (x = 1-3) radicals as well as in non-monotonic behavior of F atom density. The surface characterization by X-ray photoelectron spectroscopy and contact angle measurements showed that the C4F8+O2 mixtures with less than 60% 02 result in modification of Si surfaces due to the deposition of the FC polymer films while the change of O2 mixing ratio in the range of 30%-60% provides an effective adjustment of the surface characteristics such as surface energy, contact angle, etc.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.