CD22, a regulator of B-cell signaling, is a siglec that recognizes the sequence NeuAc␣2-6Gal on glycoprotein glycans as ligands. CD22 interactions with glycoproteins on the same cell (in cis) and apposing cells (in trans) modulate its activity in B-cell receptor signaling. Although CD22 predominantly recognizes neighboring CD22 molecules as cis ligands on B-cells, little is known about the trans ligands on apposing cells. We conducted a proteomics scale study to identify candidate trans ligands of CD22 on B-cells by UV photocross-linking CD22-Fc chimera bound to B-cell glycoproteins engineered to carry sialic acids with a 9-aryl azide moiety. Using mass spectrometrybased quantitative proteomics to analyze the cross-linked products, 27 glycoproteins were identified as candidate trans ligands. Next, CD22 expressed on the surface of one cell was photocross-linked to glycoproteins on apposing B-cells followed by immunochemical analysis of the products with antibodies to the candidate ligands. Of the many candidate ligands, only the B-cell receptor IgM was found to be a major in situ trans ligand of CD22 that is selectively redistributed to the site of cell contact upon interaction with CD22 on the apposing cell. Molecular & Cellular Proteomics 9:1339 -1351, 2010.
Glycan-binding proteins (GBPs)1 mediate diverse aspects of cell communication through their interactions with their counter-receptors comprising glycan ligands carried on cell surface glycoproteins and glycolipids. Identification of the in situ counter-receptors of glycan-binding proteins is problematic due to the fact that the vast majority of the glycoproteins of a cell will carry highly related glycan structures because they share the same secretory pathway that elaborates their glycans post-translationally en route to the cell surface. Thus, although many glycoproteins will carry the glycan structure recognized by a GBP, the challenge is to determine whether one, several, or all of these cell surface glycoproteins (and glycolipids) are recognized in situ as physiologically relevant counter-receptors (1-4). Standard in vitro methods, such as co-precipitation from cell lysates or Western blotting using binding protein probes, are useful for identifying glycoproteins that contain the glycan structure recognized by the GBP. However, these may not be relevant ligands in situ due to constraints imposed by their microdomain localization and the geometric arrangement of their glycans relative to the GBP presented on the apposing cell.In this report, we examine the in situ ligands of CD22 (Siglec-2), a member of the siglec family and a regulator of B-cell receptor (BCR) signaling that recognizes glycans containing the sequence NeuAc␣2-6Gal as ligands (2, 5, 6). Regulation of BCR signaling by CD22 is effected by its proximity to the BCR through recruitment of a tyrosine phosphatase, SHP-1, which is in turn influenced by CD22 binding to its glycan ligands (6). Glycoproteins bearing CD22 ligands are abundantly expressed on B-cells and bind to CD22 in cis (on the sa...