The Cdc6 protein is an essential component of pre-replication complexes (preRCs), which assemble at origins of DNA replication during the G1 phase of the cell cycle. Previous studies have demonstrated that, in response to ionizing radiation, Cdc6 is ubiquitinated by the anaphase promoting complex (APC Cdh1 ) in a p53-dependent manner. We find, however, that DNA damage caused by UV irradiation or DNA alkylation by methyl methane sulfonate (MMS) induces Cdc6 degradation independently of p53. We further demonstrate that Cdc6 degradation after these forms of DNA damage is also independent of cell cycle phase, Cdc6 phosphorylation of the known Cdk target residues, or the Cul4/DDB1 and APC Cdh1 ubiquitin E3 ligases. Instead Cdc6 directly binds a HECT-family ubiquitin E3 ligase, Huwe1 (also known as Mule, UreB1, ARF-BP1, Lasu1, and HectH9), and Huwe1 polyubiquitinates Cdc6 in vitro. Degradation of Cdc6 in UV-irradiated cells or in cells treated with MMS requires Huwe1 and is associated with release of Cdc6 from chromatin. Furthermore, yeast cells lacking the Huwe1 ortholog, Tom1, have a similar defect in Cdc6 degradation. Together, these findings demonstrate an important and conserved role for Huwe1 in regulating Cdc6 abundance after DNA damage.
INTRODUCTIONDuplication of large mammalian genomes requires that DNA replication initiate at thousands of chromosomal origins. In order for an origin to be competent for replication, it must first be bound by a multiprotein complex, the prereplication complex (preRC). PreRCs are constructed in a stepwise process through the chromatin binding of the origin recognition complex (ORC), which then recruits both the Cdc6 ATPase and Cdt1, two proteins that are required for the stable loading of the minichromosome maintenance complex (MCM). The Cdc6 and Cdt1-dependent loading of MCM complexes at origins licenses them for replication during the G1 phase of the cell cycle. Sufficient preRCs must be assembled during G1 to promote complete replication, but new preRCs must not assemble after S phase begins because relicensing of previously fired origins leads to rereplication and genome instability (Vaziri et al., 2003;Melixetian et al., 2004;Zhu et al., 2004;Archambault et al., 2005). For these reasons, preRC assembly is one of the most highly regulated events in the control of DNA replication. Cells restrict preRC assembly to the G1 period through a combination of overlapping mechanisms that regulate individual preRC components (reviewed in Bell and Dutta, 2002;Blow and Hodgson, 2002;Nishitani and Lygerou, 2002;Diffley, 2004;Machida et al., 2005;Fujita, 2006).Cdc6 is not only an essential factor for preRC construction, but it has also been implicated in the activation of the cell cycle checkpoint that prevents entry into mitosis while DNA replication is incomplete (Clay-Farrace et al., 2003;Oehlmann et al., 2004;Lau et al., 2006). These observations suggest that Cdc6 functions not only during G1, but also in later cell cycle stages. Moreover, Cdc6 plays a role in setting the threshold for...