SUMMARY
The cellular response to stress relies on the rapid induction of genes encoding proteins involved in preventing and repairing macromolecular damage incurred as a consequence of environmental insult. To increase our understanding of the scope of this response, a cDNA microarray, consisting of 9207 cDNA clones, was used to monitor gene expression changes in the gill and white muscle tissues of a eurythermic fish, Gillichthys mirabilis(Gobiidae) exposed to ecologically relevant heat stress. In each tissue, the induction or repression of over 200 genes was observed. These genes are associated with numerous biological processes, including the maintenance of protein homeostasis, cell cycle control, cytoskeletal reorganization,metabolic regulation and signal transduction, among many others. In both tissues, the molecular chaperones, certain transcription factors and a set of additional genes with various functions were induced in a similar manner;however, the majority of genes displayed tissue-specific responses. In gill,thermal stress induced the expression of the major structural components of the cytoskeleton, whereas these same genes did not respond to heat in muscle. In muscle, many genes involved in promoting cell growth and proliferation were repressed, perhaps to conserve energy for repair and replacement of damaged macromolecules, but a similar repression was not observed in the gill. Many of the observed changes in gene expression were similar to those described in model species whereas many others were unexpected. Measurements of the concentrations of the protein products of selected genes revealed that in each case an induction in mRNA synthesis correlated with an increase in protein production, though the timing and magnitude of the increase in protein was not consistently predicted by mRNA concentration, an important consideration in assessing the condition of the stressed cell using transcriptomic analysis.