Cathepsin C is a cysteine protease required for the activation of several pro-inflammatory serine proteases and, as such, is of interest as a therapeutic target. In cathepsin C-deficient mice and humans, the N-terminal processing and activation of neutrophil elastase, cathepsin G, and proteinase-3 is abolished and is accompanied by a reduction of protein levels. Pharmacologically, the consequence of cathepsin C inhibition on the activation of these serine proteases has not been described, due to the lack of stable and non-toxic inhibitors and the absence of appropriate experimental cell systems. Using novel reversible peptide nitrile inhibitors of cathepsin C, and cell-based assays with U937 and EcoM-G cells, we determined the effects of pharmacological inhibition of cathepsin C on serine protease activity. We show that indirect and complete inhibition of neutrophil elastase, cathepsin G, and proteinase-3 is achievable in intact cells with selective and non-cytotoxic cathepsin C inhibitors, at concentrations ϳ10-fold higher than those required to inhibit purified cathepsin C. The concentration of inhibitor needed to block processing of these three serine proteases was similar, regardless of the cell system used. Importantly, cathepsin C inhibition must be sustained to maintain serine protease inhibition, because removal of the reversible inhibitors resulted in the activation of pro-enzymes in intact cells. These findings demonstrate that near complete inhibition of multiple serine proteases can be achieved with cathepsin C inhibitors and that cathepsin C inhibition represents a viable but challenging approach for the treatment of neutrophil-based inflammatory diseases.
A series of 6-substituted 4-anilinopyrimido[5,4-d]pyrimidines has been prepared and shown to be potent inhibitors of the tyrosine kinase activity of the epidermal growth factor receptor (EGFR). These compounds are structurally related to the pyrido[3,2-d]- and pyrido[3,4-d]-pyrimidines previously shown to be EGFR inhibitors. Their structure-activity relationships (SAR) for inhibition of the isolated enzyme more closely resemble those of the [3,2-d] than the [3,4-d] pyridopyrimidine isomers. This suggests the requirement of an aza atom in the 7- but not the 5-position (i.e., a carbon atom in the 5-position) for the enhanced potency shown by 6-N-methylated derivatives in each series. X-ray crystal structures were determined for the three NHMe derivatives 2, 3, and 5c in the pyrido[9,2-d]-, pyrido[3,4-d]-, and pyrimido[5,4-d]-pyrimidine series, respectively. These show that a carbon rather than a nitrogen atom at the 5-position leads to significant conformational changes in the molecule (a longer C5a-C4 bond and a 30 degrees out-of-plane rotation of the phenyl group), due to the requirement to relieve nonbonding interactions between the C5 and N9 protons. Pyrimido[5,4-d]pyrimidine analogues bearing bulky, weakly basic solubilizing side chains linked to the 6-position through a secondary amine generally retained potency both against the isolated enzyme and for inhibition of autophosphorylation of EGFR in intact A431 cells. This agrees with a recent binding model that suggests this general class of compounds binds to EGFR with the 6-position located in an area of comparative bulk tolerance at the entrance to the ATP-binding pocket. While these solubilized pyrimido[5,4-d]pyrimidine analogues were less potent than the NHMe derivative 5c in the isolated enzyme assay, some were considerably superior to 5c (and among the most potent ever reported) as inhibitors of EGFR autophosphorylation in cellular assays.
Inhibition of cathepsin C, a dipeptidyl peptidase that activates many serine proteases, represents an attractive therapeutic strategy for inflammatory diseases with a high neutrophil burden. We recently showed the feasibility of blocking the activation of neutrophil elastase, cathepsin G, and proteinase-3 with a single cathepsin C selective inhibitor in cultured cells. Here we measured the fractional inhibition of cathepsin C that is required for blockade of downstream serine protease processing, in cell-based assays and in vivo. Using a radiolabeled active site probe and U937 cells, a 50% reduction of cathepsin G processing required ϳ50% of cathepsin C active sites to be occupied by an inhibitor. In EcoM-G cells, inhibition of 50% of neutrophil elastase activity required ϳ80% occupancy. Both of these serine proteases were fully inhibited at full cathepsin C active site occupancy, whereas granzyme B processing in TALL-104 cells was partially inhibited, despite complete occupancy. In vivo, leukocytes from cathepsin C ϩ/Ϫ mice exhibited comparable levels of neutrophil elastase activity to wild-type animals, even though their cathepsin C activity was reduced by half. The long-term administration of a cathepsin C inhibitor to rats, at doses that resulted in the nearly complete blockade of cathepsin C active sites in bone marrow, caused significant reductions of neutrophil elastase, cathepsin G and proteinase-3 activities. Our results demonstrate that the inhibition of cathepsin C leads to a decrease of activity of multiple serine proteases involved in inflammation but also suggest that high fractional inhibition is necessary to reach therapeutically significant effects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.