Cardiovascular diseases represent one of the first causes of death around the world, and atherosclerosis is one of the first steps in the development of them. Although these problems occur mainly in elderly, the incidence in younger people is being reported, and an undetermined portion of patients without the classic risk factors develop subclinical atherosclerosis at earlier stages of life. Recently, both the H. pylori infection and the intestinal microbiota have been linked to atherosclerosis. The mechanisms behind those associations are poorly understood, but some of the proposed explanations are (a) the effect of the chronic systemic inflammation induced by H. pylori, (b) a direct action over the endothelial cells by the cytotoxin associated gene A protein, and (c) alterations of the lipid metabolism and endothelial dysfunction induced by H. pylori infection. Regarding the microbiota, several studies show that induction of atherosclerosis is related to high levels of Trimethylamine N-oxide. In this review, we present the information published about the effects of H. pylori over the intestinal microbiota and their relationship with atherosclerosis and propose a hypothesis to explain the nature of these associations. If H. pylori contributes to atherosclerosis, then interventions for eradication and restoration of the gut microbiota at early stages could represent a way to prevent disease progression.