Eye gaze tracking has been used to study the influence of visual stimuli on consumer behavior and attentional processes. Eye gaze tracking techniques have made substantial contributions in advertisement design, human computer interaction, virtual reality and disease diagnosis. Eye gaze estimation is considered critical for prediction of human attention, and hence indispensable for better understanding human activities. In this paper, Latent Semantic Analysis is used to develop an information model for identifying emerging research trends within eye gaze estimation techniques. An exhaustive collection of 423 titles and abstracts of research papers published during 2005–2018 were used. Five major research areas and ten research trends were classified based upon this study.