This article deals with the design and implementation of a prototype of an efficient Low-Cost, Low-Power, Low Complexity–hereinafter (L-CPC) an image recognition system for person detection. The developed and presented methods for processing, analyzing and recognition are designed exactly for inbuilt devices (e.g., motion sensor, identification of property and other specific applications), which will comply with the requirements of intelligent building technologies. The paper describes detection methods using a static background, where, during the search for people, the background image field being compared does not change, and a dynamic background, where the background image field is continually adjusted or complemented by objects merging into the background. The results are compared with the output of the Horn-Schunck algorithm applied using the principle of optical flow. The possible objects detected are subsequently stored and evaluated in the actual algorithm described. The detection results, using the change detection methods, are then evaluated using the Saaty method in order to determine the most successful configuration of the entire detection system. Each of the configurations used was also tested on a video sequence divided into a total of 12 story sections, in which the normal activities of people inside the intelligent building were simulated.