PARP1 (poly‐ADP‐ribose polymerase 1) is a multidomain protein with a flexible and self‐folding structure that allows it to interact with a wide range of biomolecules, including nucleic acids and target proteins. PARP1 interacts with its target molecules either covalently via PARylation or non‐covalently through its PAR moieties induced by auto‐PARylation. These diverse interactions allow PARP1 to participate in complex regulatory circuits and cellular functions. Although the most studied PARP1‐mediated functions are associated with DNA repair and cellular stress response, subsequent discoveries have revealed additional biological functions. Based on these findings, PARP1 is now recognized as a major modulator of gene expression. Several discoveries show that this multifunctional protein has been intimately connected to several steps of mRNA biogenesis, from transcription initiation to mRNA splicing, polyadenylation, export, and translation of mRNA to proteins. Nevertheless, our understanding of PARP1's involvement in the biogenesis of both coding and noncoding RNA, notably circular RNA (circRNA), remains restricted. In this review, we outline the possible roles of PARP1 in circRNA biogenesis. A full examination of the regulatory roles of PARP1 in nuclear processes with an emphasis on circRNA may reveal new avenues to control dysregulation implicated in the pathogenesis of several diseases such as neurodegenerative disorders and cancers.This article is categorized under:
RNA Interactions with Proteins and Other Molecules > Protein‐RNA Interactions: Functional Implications
Regulatory RNAs/RNAi/Riboswitches > Regulatory RNAs
RNA Processing > Splicing Regulation/Alternative Splicing