Recent expansion of duplicated genes unique in the Homo lineage likely contributed to brain evolution and other human-specific traits. One hallmark example is the expansion of the human SRGAP2 family, resulting in a human-specific paralog SRGAP2C. Introduction of SRGAP2C in mouse models is associated with altering cortical neuronal migration, axon guidance, synaptogenesis, and sensory-task performance. Truncated, human-specific SRGAP2C heterodimerizes with the full-length ancestral gene product SRGAP2A and antagonizes its functions. However, the significance of SRGAP2 duplication beyond neocortex development has not been elucidated due to the embryonic lethality of complete Srgap2 knockout in mice. Using zebrafish, we showed that srgap2 knockout results in viable offspring that phenocopy "humanized" SRGAP2C larvae. Specifically, human SRGAP2C protein interacts with zebrafish Srgap2, demonstrating similar Srgap2 functional antagonism observed in mice. Shared traits between knockout and humanized zebrafish larvae include altered morphometric features (i.e., reduced body length and inter-eye distance) and differential expression of synapse-, axogenesis-, vision-related genes. Through single-cell transcriptome analysis, we further observed a skewed balance of excitatory and inhibitory neurons that likely contributes to increased susceptibility to seizures displayed by Srgap2 mutant larvae, a phenotype resembling SRGAP2 loss-of-function in a child with early infantile epileptic encephalopathy. Single-cell data also pointed to strong microglia expression of srgap2 with mutants exhibiting altered membrane dynamics and likely delayed maturation of microglial cells. srgap2-expressing microglia cells were also detected in the developing eye together with altered expression of genes related to axogenesis and synaptogenesis in mutant retinal cells. Consistent with the perturbed gene expression in the retina, we found that SRGAP2 mutant larvae exhibited increased sensitivity to broad and fine visual cues. Finally, comparing the transcriptomes of relevant cell types between human (+SRGAP2C) and non-human primates (-SRGAP2C) revealed significant overlaps of gene alterations with mutant cells in our zebrafish models; this suggests that SRGAP2C plays similar roles altering microglia and the visual system in modern humans. Together, our functional characterization of zebrafish Srgap2 and human SRGAP2C in zebrafish uncovered novel gene functions and highlights the strength of cross-species analysis in understanding the development of human-specific features.