Visual-spatial attention enhances the perception of behaviorally relevant stimuli. One issue that remains unclear is whether attention is preferentially allocated to stimuli that remain fixed in one reference frame (e.g., retina-centered), or whether it could be equally allocated to stimuli fixed in other frames. We investigated this issue by asking observers to covertly attend to sinusoidal gratings fixed in different reference frames and to discriminate changes in their orientation. First, we quantified orientation discrimination thresholds (ODTs) while subjects pursued a moving dot and either attended to a retina- or a space-centered grating. We then measured ODTs while subjects divided attention between the two gratings. We found that dividing attention proportionally increased ODTs for both target gratings relative to the focused attention condition. Second, we used the same stimulus configuration and conditions during a fixation task. Here, one grating was retina- and space-centered while the other moved in space and on the retina. Again, ODTs during divided attention proportionally increased for both gratings. These increases were similar to those measured during smooth pursuit. Our results show that humans can proportionally divide attention between targets centered in different reference frames during both smooth pursuit eye movements and fixations.