2018
DOI: 10.1016/j.matpr.2017.11.119
|View full text |Cite
|
Sign up to set email alerts
|

Hybrid Artificial Intelligence based Fault Diagnosis of SVPWM Voltage Source Inverters for Induction Motor

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
1
1

Citation Types

0
7
0
1

Year Published

2018
2018
2023
2023

Publication Types

Select...
6
2
1

Relationship

0
9

Authors

Journals

citations
Cited by 17 publications
(8 citation statements)
references
References 12 publications
0
7
0
1
Order By: Relevance
“…-AI algorithms have to be used to build a better performance, low cost, continuous, and on-line CM and FD method [79]. -AI hybrid systems should be developed to deal with multiple faults [80].…”
Section: Challenges and Future Trendsmentioning
confidence: 99%
“…-AI algorithms have to be used to build a better performance, low cost, continuous, and on-line CM and FD method [79]. -AI hybrid systems should be developed to deal with multiple faults [80].…”
Section: Challenges and Future Trendsmentioning
confidence: 99%
“…Dentre outras complexidades atribuídas ao diagnóstico correto por este método existe também a interferência ou alteração das características dos sinais por: variação dos níveis de carga no eixo da máquina, Mabrouk and Zouzou (2015); alternância de velocidade de operação, Martin-Diaz et al 2017; relação Sinal-Ruído, Singh et al (2015); indução de componentes de frequência próximos ao componente fundamental com sobreposição de sinais característicos, Naha et al (2016) e a modulação e distorção dos sinais de alimentação pelos inversores de frequência atuando no controle da máquina, Rajeswaran et al (2018).…”
Section: Figura 1 Percentual De Falhas Em MI Por Origemunclassified
“…Some of these techniques use expert systems [9], fuzzy logic [10], artificial neural networks (ANNs) [11], Bayesian inference [12], genetic algorithms (GA) [13], and SVM [14], etc. Other combined tools use Fuzzy Logic ANN [15], Recurrent Neural Networks and Dynamic Bayesian networks [16], and Neuro-Genetic Algorithm [17].…”
Section: Introductionmentioning
confidence: 99%