In modern industrial manufacturing processes, induction motors are broadly utilized as industrial drives. Online condition monitoring and diagnosis of faults that occur inside and/or outside of the Induction Motor Drive (IMD) system make the motor highly reliable, helping to avoid unscheduled downtimes, which cause more revenue loss and disruption of production. This can be achieved only when the irregularities produced because of the faults are sensed at the moment they occur and diagnosed quickly so that suitable actions to protect the equipment can be taken. This requires intelligent control with a high-performance scheme. Hence, a Field Programmable Gate Array (FPGA) based on neuro-genetic implementation with a Back Propagation Neural network (BPN) is suggested in this article to diagnose the fault more efficiently and almost instantly. It is reported that the classification of the neural network will provide the output within 2 µs although the clone procedure with microcontroller requires 7 ms. This intelligent control with a high-performance technique is applied to the IMD fed by a Voltage Source Inverter (VSI) to diagnose the fault. The proposed approach was simulated and experimentally validated.
The aging of PV cells reduces their electrical performance i.e., the parasitic parameters are introduced in the solar panel. The shunt resistance (RSh), series resistance (RS), photo current (IPh), diode current (Id), and diffusion constant (a1) are known as parasitic or extraction parameters. Cracks and hotspots reduce the performance of PV cells and result in poor V–I characteristics. Certain tests are carried out over a long period of time to determine the quality of solar cells; for example, 1000 h of testing is comparable to 20 years of operation. The extraction of solar parameters is important for PV modules. The Tabu Search Optimization (TSO) algorithm is a robust meta-heuristic algorithm that was employed in this study for the extraction of parasitic parameters. Particle Swarm Optimization (PSO) and a Genetic lgorithm (GA), as well as other well-known optimization methods, were used to test the proposed method’s correctness. The other approaches included the lightning search algorithm (LSA), gravitational search algorithm (GSA), and pattern search (PS). It can be concluded that the TSO approach extracts all six parameters in a reasonably short period of time. The work presented in this paper was developed and analyzed using a MATLAB-Simulink software environment.
Abstract. Genetic Algorithm (GA) is an artificial intelligence procedure and one of the probabilistic heuristic search algorithms based on the mechanism of natural selection and evaluation. The GA is used to select the characteristic parameters of the classifiers, the input features and find the optimum solution for a variety of complex problems like Very Large Scale Integrated (VLSI) design, layout and test automation. Field Programmable Gate Array (FPGA) is an integrated circuit designed to be configured by the customer or designer after manufacturing and is very widely used in VLSI Circuits. The GA architecture is simulated and verified by using VHDL (Very High Speed Integrated Circuit Hardware Description Language).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.