“…Researchers have suggested several evolutionary optimization strategies for single-objective and multi-objective optimization problems ( Steuer, 1986 ). These include the Adaptive neuro-fuzzy inference system-evolutionary algorithms hybrid models (ANFIS-EA) ( Roy et al, 2020 ), multi-objective optimization of grid-connected PV-wind hybrid system ( Barakat, Ibrahim & Elbaset, 2020 ), ant colony optimization (ACO) ( Dorigo, Birattari & Thomas, 2006 ), evolution strategy (ES) ( Mezura-Montes & Coello Coello, 2005 ), particle swarm optimization (PSO) ( Janga Reddy & Nagesh Kumar, 2021 ; Coello Coello, Pulido & Lechuga, 2004 ), genetic algorithm ( Deb et al, 2002 ), genetic programming (GP) ( Mugambi & Hunter, 2003 ), evolutionary programming (EP) ( Fonseca & Fleming, 1995 ), differential evolution (DE) ( Storn & Price, 1995 ), group counseling optimizer ( Eita & Fahmy, 2010 ; Ali & Khan, 2013 ), comprehensive parent selection-based genetic algorithm (CPSGA) ( Ali & Khan, 2012 ), whale optimization algorithm ( Masadeh, 2021 ), binary particle swarm optimization algorithm ( Sun et al, 2021 ), hybrid cat-particle swarm optimization algorithm ( Santoso et al, 2022 ), An enhanced binary slime mold algorithm ( Abdollahzadeh et al, 2021 ), improving flower pollination algorithm ( Basheer & Algamal, 2021 ), and 0/1 knapsack problem using genetic algorithm ( Singh, 2011 ), are some of the most common evolutionary optimization techniques. The group counseling optimizer (GCO) ensures uniqueness to prevent premature convergence.…”