The main and pivot part of electric companies is the load forecasting. Decision-makers and think tank of power sectors should forecast the future need of electricity with large accuracy and small error to give uninterrupted and free of load shedding power to consumers. The demand of electricity can be forecasted amicably by many Machine Learning (ML), Deep Learning (DL) and Artificial Intelligence (AI) techniques among which hybrid methods are most popular. The present technologies of load forecasting and present work regarding combination of various ML, DL and AI algorithms are reviewed in this paper. The comprehensive review of single and hybrid forecasting models with functions; advantages and disadvantages are discussed in this paper. The comparison between the performance of the models in terms of Mean Absolute Error (MAE), Root Mean Squared Error (RMSE), and Mean Absolute Percentage Error (MAPE) values are compared and discussed with literature of different models to support the researchers to select the best model for load prediction. This comparison validates the fact that the hybrid forecasting models will provide a more optimal solution.INDEX TERMS load forecasting, machine learning, load shedding, root mean squared error, mean absolute percentage error.
Research at York St John (RaY) is an institutional repository. It supports the principles of open access by making the research outputs of the University available in digital form.
Human-Object Interaction (HOI) recognition, due to its significance in many computer visionbased applications, requires in-depth and meaningful details from image sequences. Incorporating semantics in scene understanding has led to a deep understanding of human-centric actions. Therefore, in this research work, we propose a semantic HOI recognition system based on multi-vision sensors. In the proposed system, the de-noised RGB and depth images, via Bilateral Filtering (BLF), are segmented into multiple clusters using a Simple Linear Iterative Clustering (SLIC) algorithm. The skeleton is then extracted from segmented RGB and depth images via Euclidean Distance Transform (EDT). Human joints, extracted from the skeleton, provide the annotations for accurate pixel-level labeling. An elliptical human model is then generated via a Gaussian Mixture Model (GMM). A Conditional Random Field (CRF) model is trained to allocate a specific label to each pixel of different human body parts and an interaction object. Two semantic feature types that are extracted from each labeled body part of the human and labelled objects are: Fiducial points and 3D point cloud. Features descriptors are quantized using Fisher's Linear Discriminant Analysis (FLDA) and classified using K-ary Tree Hashing (KATH). In experimentation phase the recognition accuracy achieved with the Sports dataset is 92.88%, with the Sun Yat-Sen University (SYSU) 3D HOI dataset is 93.5% and with the Nanyang Technological University (NTU) RGB+D dataset it is 94.16%. The proposed system is validated via extensive experimentation and should be applicable to many computer-vision based applications such as healthcare monitoring, security systems and assisted living etc.INDEX TERMS 3D point cloud, fiducial points, human-object interaction, pixel labeling, semantic segmentation, super-pixels, K-ary tree hashing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.