Computational imaging and light field technology promise to deliver the required six-degrees-of-freedom for natural scenes in virtual reality. Already existing extensions of standardized video coding formats, such as multi-view coding and multi-view plus depth, are the most conventional light field video coding solutions at the moment. The latest multi-view coding format, which is a direct extension of the high efficiency video coding (HEVC) standard, is called multi-view HEVC (or MV-HEVC). MV-HEVC treats each light field view as a separate video sequence, and uses syntax elements similar to standard HEVC for exploiting redundancies between neighboring views. To achieve this, interview and temporal prediction schemes are deployed with the aim to find the most optimal trade-off between coding performance and reconstruction quality. The number of possible prediction structures is unlimited and many of them are proposed in the literature. Although some of them are efficient in terms of compression ratio, they complicate random access due to the dependencies on previously decoded pixels or frames. Random access is an important feature in video delivery, and a crucial requirement in multiview video coding. In this work, we propose and compare different prediction structures for coding light field video using MV-HEVC with a focus on both compression efficiency and random accessibility. Experiments on three different short-baseline light field video sequences show the trade-off between bit-rate and distortion, as well as the average number of decoded views/frames, necessary for displaying any random frame at any time instance. The findings of this work indicate the most appropriate prediction structure depending on the available bandwidth and the required degree of random access. Keywords Light field video coding • multi-view video coding • MV-HEVC • prediction structures • random access • virtual reality • free navigation