Background: Cardiovascular disease (CVD) prevalence has increased continuously over the last 30 years in China. Dyslipidemia is an important modifiable risk factor in CVD. We aimed to collect current data on the prevalence of dyslipidemia in northern China and explore potential influencing factors. Methods: In this cross-sectional study, we selected a representative sample of 65,128 participants aged ≥35 years in Inner Mongolia during 2015-2017. All participants completed a questionnaire and were examined for risk factors. Dyslipidemia was defined according to 2016 Chinese guidelines for adults. The associated factors for dyslipidemia were estimated by multivariate logistic regression analysis. Results: The age-standardized prevalence of dyslipidemia was 31.2% overall, with 4.3, 2.4, 14.7, and 17.4% for high total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), triglycerides (TG), and low high-density lipoprotein cholesterol (HDL-C), respectively. The dyslipidemia prevalence was significantly higher in men than women (37.9% vs. 27.5%, P < 0.001), but postmenopausal women had a higher prevalence of dyslipidemia components (except low HDL-C). Compared with Han participants, Mongol participants had a lower prevalence of dyslipidemia (29.1% vs. 31.4%, P < 0.001). Male sex, living in urban areas, Han ethnicity, smoking, obesity, central obesity, hypertension, and diabetes were all positively correlated with dyslipidemia; alcohol consumption was linked to lower risk of dyslipidemia. Conclusions: Our study revealed that dyslipidemia is a health problem in northern China. Greater efforts to prevent and manage dyslipidemia, especially in men under age 55 years, postmenopausal women, and people with unhealthy lifestyles or chronic diseases.
Whether and how warming alters functional traits of absorptive plant roots remains to be answered across the globe. Tackling this question is crucial to better understanding terrestrial responses to climate change as fine-root traits drive many ecosystem processes.We carried out a detailed synthesis of fine-root trait responses to experimental warming by performing a meta-analysis of 964 paired observations from 177 publications.Warming increased fine-root biomass, production, respiration and nitrogen concentration as well as decreased root carbon : nitrogen ratio and nonstructural carbohydrates. Warming effects on fine-root biomass decreased with greater warming magnitude, especially in shortterm experiments. Furthermore, the positive effect of warming on fine-root biomass was strongest in deeper soil horizons and in colder and drier regions. Total fine-root length, morphology, mortality, life span and turnover were unresponsive to warming.Our results highlight the significant changes in fine-root traits in response to warming as well as the importance of warming magnitude and duration in understanding fine-root responses. These changes have strong implications for global soil carbon stocks in a warmer world associated with increased root-derived carbon inputs into deeper soil horizons and increases in fine-root respiration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.