LC/MS/MS technique, employing QTOF mass analyzer, was used for comparative metabolomic fingerprinting of seven edible mushroom varieties (P.ostreatus, L.edodes, L.sulphureus, A.campestris, T.clypeatus, T.microcarpus and T.letestui). The aim was to identify biomarkers unique to L.sulphureus which might be responsible for the pharmacological claim of the mushroom by the Kaffa people in Ethiopia. As an outcome of the data mining and pre-treatment step using Markerview TM software, positive and negative ionization data matrices of 71,083 and 54,856 peaks, respectively, were obtained. Regardless of the ionization mode, the principal component analysis (PCA) of the data set representing the seven edible mushrooms each in triplicate revealed a unique separate clusters for L.sulphureus, documenting differences in LC-MS profiles associated with the sample. Based on plot profile, only 14 and 27 peaks representing monoisotopic ions unique to L.sulphureus at the positive and negative ionization mode respectively were obtained. All the pre-selected biomarkers were searched from METLIN metabolite database, but only one peak at 13.41 min with m/z of 471.3468 and 469.3348, positive and negative ionization, respectively were tentatively identified as 18α-glycyrrhetinic acid (commonly called Enoxolone). This metabolite was verified by comparing the retention time, MS and MS/MS data spectra of authentic standard and sample obtained from Peakview TM software. Mass frontier software was used to generate possible fragmentation and rearrangement mechanisms of the parent ion. In conclusion, 18α-glycyrrhetinic acid might be one of the compounds responsible for the biological claim of the local people.