Magnetic dipole (M1) excitations build not only a fundamental mode of nucleonic transitions, but they are also relevant for nuclear astrophysics applications. We have established a theory framework for description of M1 transitions based on the relativistic nuclear energy density functional. For this purpose the relativistic quasiparticle random phase approximation (RQRPA) is established using density dependent point coupling interaction DD-PC1, supplemented with the isovectorpseudovector interaction channel in order to study unnatural parity transitions. The introduced framework has been validated using the M1 sum rule for core-plus-two-nucleon systems, and employed in studies of the spin, orbital, isoscalar and isovector M1 transition strengths in magic nuclei 48 Ca and 208 Pb, and open shell nuclei 42 Ca and 50 Ti. In these systems, the isovector spin-flip M1 transition is dominant, mainly between one or two spin-orbit partner states. It is shown that pairing correlations have a significant impact on the centroid energy and major peak position of the M1 mode. The M1 excitations could provide an additional constraint to improve nuclear energy density functionals in the future studies.I.