Chitosan (CH) decorated polystyrene (PS) particles were synthesized within complexes of CH, a polycation under acid conditions, and tiny amounts of sodium dodecylsulfate (SDS). Particle characterization was performed by means of dynamic light scattering, zeta potential measurements, and transmission electron microscopy. All dispersions were stable in the ionic strength of 2.0 mol L-1 NaCl during 2 months. The outstanding colloidal stability was attributed to the presence of a hydrated CH layer around the particles. CH decorated PS particles were attached to atomic force microscopy cantilevers and probed against Si wafers in water and in NaCl 0.01 mol/L. The mean thickness of CH layer amounted to 35 +/- 11 and 16 +/- 6 nm, when the medium was water and NaCl 0.01 mol/L, respectively. Adsorption isotherm of hexokinase (HK) onto PS/CH particles studied by means of spectrophotometry showed three regions: an initial step; adsorption plateau and multilayer formation. Enzymatic activity of free HK and immobilized HK was monitored by means of spectrophotometry as a function of storing time and reuse. After 3 days, storing HK free in solution dramatically lost its catalytic properties. On the contrary, HK-covered PS/CH particles retained enzymatic activity over 1 month. Moreover, HK-covered PS/CH particles could be reused in the determination of glucose two times consecutively, without losing activity. These interesting findings were discussed in light of the role of water in enzyme conformation.