Abstract:We demonstrate a monolithic photonic integration platform that leverages the existing state-of-the-art CMOS foundry infrastructure. In our approach, proven XeF 2 post-processing technology and compliance with electronic foundry process flows eliminate the need for specialized substrates or wafer bonding. This approach enables intimate integration of large numbers of nanophotonic devices alongside high-density, highperformance transistors at low initial and incremental cost. We demonstrate this platform by presenting grating-coupled, microring-resonator filter banks fabricated in an unmodified 28 nm bulk-CMOS process by sharing a mask set with standard electronic projects. The lithographic fidelity of this process enables the high-throughput fabrication of second-order, wavelength-division-multiplexing (WDM) filter banks that achieve low insertion loss without post-fabrication trimming. Bienstman, D. V. Thourhout, and R. Baets, "Low-loss SOI photonic wires and ring resonators fabricated with deep UV lithography," IEEE Photon. Technol. Lett. 16(5), 1328-1330 (2004). 6. Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, "Micrometre-scale silicon electro-optic modulator," Nature 435(7040), 325-327 (2005). 7. C. Gunn, "CMOS photonics for high-speed interconnects," IEEE Micro 26(2), 58-66 (2006). 8. Y. Vlasov, W. M. J. Green, and F. Xia, "High-throughput silicon nanophotonic wavelength-insensitive switch for on-chip optical networks," Nat. Photonics 2(4), 242-246 (2008