Grinding is mostly considered as a finishing operation by which a high surface quality is achieved. An increase in productivity is therefore limited by maintained surface properties such as the roughness or tensile residual stresses. Thus, a roughing operation is inevitable followed by a finishing operation, while both operations are separated, leading to larger cycle times and process costs. In this paper, a novel process combination is investigated in which the roughing is done by grinding and the finishing operation by deep rolling within one tool setup. In this way, both processes are conducted parallel within the primary processing time. The objective of this study is the knowledge of the characteristics of this process combination with regard to the workpiece surface integrity. Therefore, shafts are ground in peel grinding with varying grinding wheel types and process parameters and subsequently machined with deep rolling. The process combination is evaluated with regard to the process forces and the resulting surface properties. In addition, experiments using the process combination were conducted in order to investigate the transferability of the results towards the process combination. By this approach, it was found that the surface roughness was reduced up to 80% by deep rolling showing the potential of the process combination.