Abstract-In this work, we propose a framework for the recognition and prediction of driver maneuvers by considering holistic cues. With an array of sensors, driver's head, hand, and foot gestures are being captured in a synchronized manner together with lane, surrounding agents, and vehicle parameters. An emphasis is put on real-time algorithms. The cues are processed and fused using a latent-dynamic discriminative framework. As a case study, driver activity recognition and prediction in overtaking situations is performed using a naturalistic, on-road dataset. A consequence of this work would be in development of more effective driver analysis and assistance systems.