International audienceWith the objective to improve road safety, the automotive industry is moving toward more “intelligent” vehicles. One of the major challenges is to detect dangerous situations and react accordingly in order to avoid or mitigate accidents. This requires predicting the likely evolution of the current traffic situation, and assessing how dangerous that future situation might be. This paper is a survey of existing methods for motion prediction and risk assessment for intelligent vehicles. The proposed classification is based on the semantics used to define motion and risk. We point out the tradeoff between model completeness and real-time constraints, and the fact that the choice of a risk assessment method is influenced by the selected motion model
Predicting driver behavior is a key component for Advanced Driver Assistance Systems (ADAS). In this paper, a novel approach based on Support Vector Machine and Bayesian filtering is proposed for online lane change intention prediction. The approach uses the multiclass probabilistic outputs of the Support Vector Machine as an input to the Bayesian filter, and the output of the Bayesian filter is used for the final prediction of lane changes. A lane tracker integrated in a passenger vehicle is used for real-world data collection for the purpose of training and testing. Data from different drivers on different highways were used to evaluate the robustness of the approach. The results demonstrate that the proposed approach is able to predict driver intention to change lanes on average 1.3 seconds in advance, with a maximum prediction horizon of 3.29 seconds.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.