Predicting driver behavior is a key component for Advanced Driver Assistance Systems (ADAS). In this paper, a novel approach based on Support Vector Machine and Bayesian filtering is proposed for online lane change intention prediction. The approach uses the multiclass probabilistic outputs of the Support Vector Machine as an input to the Bayesian filter, and the output of the Bayesian filter is used for the final prediction of lane changes. A lane tracker integrated in a passenger vehicle is used for real-world data collection for the purpose of training and testing. Data from different drivers on different highways were used to evaluate the robustness of the approach. The results demonstrate that the proposed approach is able to predict driver intention to change lanes on average 1.3 seconds in advance, with a maximum prediction horizon of 3.29 seconds.
The Random Walks (RW) algorithm is one of the most efficient and easy-to-use probabilistic segmentation methods. By combining contrast terms with prior terms, it provides accurate segmentations of medical images in a fully automated manner. However, one of the main drawbacks of using the RW algorithm is that its parameters have to be hand-tuned. we propose a novel discriminative learning framework that estimates the parameters using a training dataset. The main challenge we face is that the training samples are not fully supervised. Specifically, they provide a hard segmentation of the images, instead of a probabilistic segmentation. We overcome this challenge by treating the optimal probabilistic segmentation that is compatible with the given hard segmentation as a latent variable. This allows us to employ the latent support vector machine formulation for parameter estimation. We show that our approach significantly outperforms the baseline methods on a challenging dataset consisting of real clinical 3D MRI volumes of skeletal muscles.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.