Bazykin's predator-prey population model is considered to represent the exchange stability condition of population growth. The existence of the hydra effect and, at the same time, analyzing its influence on population growth. The condition of the model divides the species into a stage structure, namely, prey, immature predators, and mature predators. The population growth of the three species has its own characteristics. This research revealed that the Holling type II and intraspecific predatory function responses together induce the Hydra effect. In the model formed, there are 12 equilibrium points, with details for every seven points of negative imaginary equilibrium and five points of non-negative equilibrium. The findings of research studies center on five points of non-negative equilibrium. All real roots that interpret the species population's growth conditions are taken and tested for long-term stability. The test results show one point of equilibrium that meets the Routh-Hurwitz criteria and their characteristic equations. In numerical simulations, the maximum sustained yield is in the local asymptotic stable state. The growth of prey trajectories increased significantly, although at the beginning of the interaction there was a slowdown in population growth. Meanwhile, the population of immature predators and mature predators was not significantly different. Both populations grow steadily toward the point of population stability. It turns out that the two populations grow inversely, the faster the rate of predation by predators, the faster the growth rate of the prey population.